
Multimedia Systems manuscript No.
(will be inserted by the editor)

Performance Evaluation of TcpHas: TCP for HTTP Adaptive
Streaming

Chiheb Ben Ameur · Emmanuel Mory · Bernard
Cousin · Eugen Dedu

Received: date / Accepted: date

Abstract HTTP Adaptive Streaming (HAS) is a widely used video streaming technology
that suffers from a degradation of user’s Quality of Experience (QoE) and network’s Quality
of Service (QoS) when many HAS players are sharing the same bottleneck link and com-
peting for bandwidth. The two major factors of this degradation are: the large OFF period
of HAS, which causes false bandwidth estimations, and the TCP congestion control, which
is not suitable for HAS given that it does not consider the different video encoding bitrates
of HAS.

This paper proposes a HAS-based TCP congestion control, TcpHas, that minimizes the
impact of the two aforementioned issues. It does this by using traffic shaping on the server.
Simulations indicate that TcpHas improves both QoE, mainly by reducing instability and
convergence speed, and QoS, mainly by reducing queuing delay and packet drop rate.

Keywords HTTP Adaptive Streaming; TCP Congestion Control; Cross-layer Optimiza-
tion; Traffic Shaping; Quality of Experience; Quality of Service.

1 Introduction

Video streaming is a widely used service. According to 2016 Sandvine report [32], in North
America, video and audio streaming in fixed access networks accounts for over 70% of the
downstream bandwidth in evening hours. Given this high usage, it is of extreme importance
to optimize its use. This is usually done by adapting the video to the available bandwidth.
Numerous adaptation methods have been proposed in the literature and by major companies,
and their differences mainly rely on the entity that does the adaptation (client or server), the
variable used for adaptation (the network or sender or client buffers), and the protocols used;
the major companies having finally opted for HTTP [16].

HTTP Adaptive Streaming (HAS) is a streaming technology where video contents are
encoded and stored at different qualities at the server and where players (clients) can choose

Authors’ addresses: C. Ben Ameur, (Current address) INNES, ZAC Atalante Champeaux, 5A rue Pierre
Joseph Colin, 35000 Rennes, France; E. Mory, Orange Labs, 4 rue du Clos Courtel, 35510 Cesson Sévigné,
France; B. Cousin, IRISA, University of Rennes 1, 263 av. Général Leclerc, 35000 Rennes, France; E. Dedu,
FEMTO-ST Institute, Numérica, cours Leprince-Ringuet, 25200 Montbéliard, France.

2 Chiheb Ben Ameur et al.

periodically the quality according to the available resources. Popular HAS-based meth-
ods are Microsoft Smooth Streaming, Apple HTTP Live Streaming, and MPEG DASH
(Dynamic Adaptive Streaming over HTTP). Still, this technology is not optimal for video
streaming, mainly because its HTTP data is transported using the TCP protocol. Indeed,
video data is encoded at distinct bitrates, and TCP does not increase the throughput suffi-
ciently quickly when the bitrate changes. TCP variants (such as Cubic, Illinois, and West-
wood+) specific to high bandwidth-delay product networks achieve high bandwidth more
quickly and seem to give better performance for HAS service than classical TCP variants
such as NewReno and Vegas [9], but the improvement is limited.

Another reason for this suboptimality is the highly periodic ON–OFF activity pattern
specific to HAS [2]. Currently, a HAS player estimates the available bandwidth by com-
puting the download bitrate for each chunk at the end of the download (for the majority
of players, this estimation is done by dividing the chunk size by its download duration).
As such, it is impossible for a player to estimate the available bandwidth when no data is
being received, i.e. during OFF periods. Moreover, when several HAS stream compete in
the same home network, bandwidth estimation becomes more difficult. For example, if the
ON period of a player coincides with the OFF period of a second player, the first player
will overestimate its available bandwidth, and makes it select for the next chunk a quality
level higher than in reality. This, in turn, could lead to a congestion event if the sum of the
downloading bitrates of the two players exceeds the available bandwidth of the bottleneck.
An example is given in [9] (table 4): the congestion rate for two competing HAS clients
is considerably reduced when using a traffic shaping. Finally, unstable quality levels are
harmful to user’s Quality of Experience (QoE) [33]. Traffic shaping, which expands the ON
periods and shrinks the OFF periods, can considerably limit the drawbacks mentioned above
[1, 21, 7, 35, 3, 8].

One method to reduce occurrences of ON–OFF patterns is to use server-based shaping
at application layer [3]. This approach is cross-layer because it interacts with the TCP layer
and its parameters such as the congestion window, cwnd, and the round-trip time estimation,
RTT. Hence, implementing HAS traffic shaping at the TCP level is naturally more practical
and easier to manage; in addition, this should offer better bandwidth share among HAS
streams, reduce congestion events and improve the QoE of HAS users.

Despite the advantages of using a transport layer-based method for HAS, and in con-
trast with other types of streaming, where methods at the transport layer have already been
proposed (RTP, Real-time Transport Protocol, and TFRC, TCP Friendly Rate Control [17]),
to the best of our knowledge, there is no proposition at the transport level specifically de-
signed for HAS. For commercial video providers YouTube, Dailymotion, Vimeo and Netflix,
according to [19], “The quality switching algorithms are implemented in the client players.
A player estimates the bandwidth continuously and transitions to a lower or to a higher qual-
ity stream if the bandwidth permits.” The streaming depends on many parameters, such as
player, video quality, device and video service provider etc., and uses various techniques
such as several TCP connections, variable chunk sizes, different processing for audio and
video flows, different throttling factors etc. To conclude, all these providers use numerous
techniques, all of them based on client.

Therefore, in this paper, we extend our previous work [10] by proposing a HAS-oriented
TCP congestion control variant, TcpHas, that aims to minimize the aforementioned issues
(TCP throughput insufficient increase and ON-OFF pattern) and to unify all the techniques
given in the previous paragraph. It uses four sub-modules: bandwidth estimator, optimal
quality level estimator, ssthresh adjusting, and cwnd adjusting to the shaping rate. Simula-
tion results show that TcpHas considerably improves both QoS (queuing delay, packet drop

Performance Evaluation of TcpHas: TCP for HTTP Adaptive Streaming 3

rate) and QoE (stability, convergence speed), performs well with several concurrent clients,
and does not cause stalling events.

The remainder of this paper is organized as follows: Section 2 presents server-based
shaping methods and describes possible optimizations at TCP level. Then, Section 3 de-
scribes TcpHas congestion control and Section 4 evaluates it. Section 5 concludes the arti-
cle.

2 Background and related works

Our article aims to increase QoE and QoS by fixing the ON–OFF pattern. Many server-
based shaping methods have been proposed in the literature to improve QoE and QoS of
HAS. Their functioning is usually separated into two modules:

1. Estimation of the optimal quality level, based on network conditions, such as bandwidth,
delay, and/or history of selected quality levels, and available encoding bitrates of the
video.

2. The shaping function of the sending rate, which should be suitable to the encoding
bitrate of the estimated optimal quality level.

The next two subsections describe constraints and proposed solutions for each module.
The last subsection presents some possible ways of optimization, which provides the basis
for the TcpHas design.

2.1 Optimal Quality Level Estimation

A major constraint of optimal quality level estimation is that the server has no visibility on
the set of flows that share the bottleneck link.

Ramadan et al. [31] propose an algorithm to reduce the oscillations of quality during
video adaptation. During streaming, it marks each quality as unsuccessful or successful,
depending on whether it has led to lost packets or not. A successfulness value is thus attached
to each quality, and is updated regularly using an EWMA (Exponential Weighted Moving
Average) algorithm. The next quality increase is allowed if and only if its successfulness
value does not exceed some threshold. We note that, to discover the available bandwidth,
this method increases throughput and pushes to packet drop, which is different from our
proposed method, where the available bandwidth is computed using an algorithm.

Akhshabi et al. [3] propose a server-based shaping method that aims to stabilize the
quality level sent by the server by detecting oscillation events. The shaping function is acti-
vated only when oscillations are detected. The optimal quality level is based on the history
of quality level oscillations. Then, the server shapes its sending rate based on the encod-
ing bitrate of the estimated optimal quality level. However, when the end-to-end available
bandwidth increases, the HAS player cannot increase its quality level when the shaper is
activated. This is because the sending bitrate is limited on the server side and when the end-
to-end available bandwidth increases, the player is still stable on the same quality level that
matches the shaping rate. To cope with that, the method deactivates the shaping function
for some chunks and uses two TCP parameters, RTT and cwnd, to compute the connection
throughput that corresponds to the end-to-end available bandwidth (cwnd

RT T). If the estimated
bandwidth is higher than the shaping rate, the optimal quality level is increased to the next
higher quality level and the shaping rate is increased to follow its encoding bitrate. We note

4 Chiheb Ben Ameur et al.

that this method is implemented in the application layer. It takes as inputs the encoding bi-
trates of delivered chunks and two TCP parameters (RTT and cwnd). The authors indicate
that their method stabilizes the competing players inside the same home network without
significant bandwidth utilization loss.

Accordingly, the optimal quality estimation process is based on two different techniques:
quality level oscillation detection and bandwidth estimation using the throughput measure-
ment. The former is based on the application layer information (i.e., the encoding bitrate of
the actual and previous sent chunks) and is sufficient to activate the shaping function (i.e.,
the shaper). However, to verify whether the optimal quality level has been increased or not,
the server is obliged to deactivate the shaper to let the TCP congestion control algorithm
occupy the remaining capacity available for the HAS stream.

Although this proposed method offers performance improvements on both QoE and
QoS, the concept of activating and deactivating the shaper is not sufficiently solid, espe-
cially against unstable network conditions, and raises a number of open questions about the
duration of deactivation of the traffic shaping and its impact on increasing the OFF period
duration. In addition, this method is not proactive and the shaper is activated only in the case
of quality level oscillation.

What is missing in this proposed method is a good estimation of the available bandwidth
for the HAS flow. This method relies on the throughput measurement during non-shaped
phases. If a bandwidth estimation less dependent on cwnd could be given, we could keep the
shaper activated during the whole HAS stream and adapt the estimation of optimal quality
level to the estimation of available bandwidth.

2.2 Traffic Shaping Methods

Ghobadi et al. propose a shaping method on the server side called Trickle [18]. It was pro-
posed for YouTube in 2011, when it adopted progressive download technology. Its key idea
is to place a dynamic upper bound on cwnd such that TCP itself limits the overall data rate.
The server application periodically computes the cwnd bound from the product between the
round-trip time (RTT) and the target streaming bitrate. Then it uses a socket option to apply
it to the TCP socket. Their results show that Trickle reduces the average RTT by up to 28%
and the average TCP loss rate by up to 43%. However, HAS differs from progressive down-
load by the change of encoding bitrate during streaming. Nevertheless, Trickle can also be
used with HAS by adapting the cwnd bound to the encoding bitrate of each chunk.

We note that the selection of the shaping rate by the server-based shaping methods does
not mean that the player will automatically start requesting that next higher quality level [3].
The transition to another shaping rate may take place several chunks later, depending on the
player’s bitrate controller and the server-based shaping method efficiency.

Furthermore, it was reported [9] that ssthresh has a predominant effect on the conver-
gence speed of the HAS client to select the desired optimal quality level. Indeed, when
ssthresh is set higher than the product of shaping rate and RTT, the server becomes aggres-
sive and causes congestions and a reduction of quality level selection on the player side.
In contrast, when ssthresh is set lower than this product, cwnd takes several RTTs to reach
the value of this product, because in the congestion avoidance phase the increase of cwnd
is relatively slow (one MSS, Maximum Segment Size, each RTT). Consequently, the server
becomes conservative and needs a long time to occupy its selected shaping rate. Hence, the
player would have difficulties reaching its optimal quality level.

Performance Evaluation of TcpHas: TCP for HTTP Adaptive Streaming 5

Bandwidth

estimation

Encoding

cwnd

RTT
levels

ACK reception

ssthresh

Fig. 1 TCP parameter setting process for quality level selection.

Accordingly, shaping the sending rate by limiting cwnd, as described in Trickle, has a
good effect on improving the QoE of HAS. However, it is still insufficient to increase the
reactivity of the HAS player and consequently to accelerate the convergence speed. Hence,
to improve the performance of the shaper, ssthresh needs to be modified too. The value of
ssthresh should be set at the right value that allows the server to quickly reach the desired
shaping rate.

2.3 Optimization of Current Solutions

What can be noted from the different proposed methods for estimating the optimal quality
level is that an efficient end-to-end estimator of available bandwidth can improve their per-
formance, as shown in Subsection 2.1. In addition, the only parameter from the application
layer needed for shaping the HAS traffic is the encoding bitrate of each available quality
level of the corresponding HAS stream. As explained in Subsection 2.2, the remaining pa-
rameters are found in the TCP layer: the congestion window cwnd, the slow-start threshold
ssthresh, and the round-trip time RTT. We are particularly interested in adjusting ssthresh to
accelerate the convergence speed. This is summed up in figure 1.

Naturally, what is missing here is an efficient TCP-based method for end-to-end band-
width estimation. We also need a mechanism that adjusts ssthresh based on the output of the
bandwidth estimator scheme. Both this mechanism and estimation schemes used by various
TCP variants are introduced in the following.

2.3.1 Adaptive Decrease Mechanism

In the literature, we found a specific category of TCP variants that set ssthresh using band-
width estimation. Even if the estimation is updated over time, TCP uses it only when a
congestion event is detected. The usefulness of this mechanism, known as adaptive de-
crease mechanism, is described in [27] as follows: “the adaptive window setting provides
a congestion window that is decreased more in the presence of heavy congestion and less
in the presence of light congestion or losses that are not due to congestion, such as in the
case of losses due to unreliable links”. This low frequency of ssthresh updating (only after
congestion detection) is justified in [12] by the fact that, in contrast, a frequent updating of
ssthresh tends to force TCP into congestion avoidance phase, preventing it from following
the variations in the available bandwidth.

6 Chiheb Ben Ameur et al.

Hence, the unique difference of this category from the classical TCP congestion variant
is only the adaptive decrease mechanism when detecting a congestion, i.e., when receiv-
ing three duplicated ACKs or when the retransmission timeout expires. This mechanism is
described in Algorithm 1.

Algorithm 1 TCP adaptive decrease mechanism.
1: if 3duplicateACKsarereceived then
2: ssthresh = B̂we×RT Tmin
3: if cwnd > ssthresh then
4: cwnd = ssthresh
5: end if
6: end if
7: if retransmissiontimeout expires then
8: ssthresh = B̂we×RT Tmin
9: cwnd = initial cwnd

10: end if
. where B̂we is the estimated bandwidth and RT Tmin is the lowest RT T measurement

We remark that the algorithm uses the estimated bandwidth, B̂we, multiplied by RT Tmin
to update the ssthresh value. The use of RT Tmin instead of the actual RTT is justified by
the fact that RT Tmin can be considered as an estimation of RTT of the connection when the
network is not congested.

2.3.2 Bandwidth Estimation Schemes

The most common TCP variant that uses bandwidth estimation to set ssthresh is Westwood.
Other newer variants have been proposed, such as Westwood+ and TIBET (Time Intervals-
based Bandwidth Estimation Technique). The only difference between them is the band-
width estimation scheme used. In the following, we introduce the different schemes and
describe their performance.

Westwood estimation scheme [28]: The key idea of Westwood is that the source per-
forms an end-to-end estimation of the bandwidth available along a TCP connection by mea-
suring the rate of returning acknowledgments [28]. It consists of estimating this bandwidth
by properly filtering the flow of returning ACKs. A sample of available bandwidth Bwek is
computed each time tk the sender receives an ACK:

Bwek =
dk

tk− tk−1
(1)

where dk is the amount of data acknowledged by the ACK that is received at time tk. dk is
determined by an accurate counting procedure by taking into consideration delayed ACKs,
duplicate ACKs and selective ACKs. Then, the bandwidth samples Bwek are low-pass fil-
tered by using a discrete-time low-pass filter to obtain the bandwidth estimation B̂wek. The
low-pass filter employed is generally the exponentially-weighted moving average function:

B̂wek = γ× ̂Bwek−1 +(1− γ)×Bwek (2)

where 0≤ γ ≤ 1. Low-pass filtering is necessary because congestion is due to low-frequency
components of the available bandwidth, and because of the delayed ACK option [24, 26].

Performance Evaluation of TcpHas: TCP for HTTP Adaptive Streaming 7

However, this estimation scheme is affected by the ACK compression phenomenon. This
phenomenon occurs when the time spacing between the received ACKs is altered by the
congestion of the routers on the return path [39]. In fact, when ACKs pass through one con-
gested router, which generates additional queuing delay, they lose their original time spac-
ing because during forwarding they are spaced by the short ACK transmission time [12].
The result is ACK compression that can lead to bandwidth overestimation when computing
the bandwidth sample Bwek. Moreover, the low-pass filtering process is also affected by
ACK compression because it cannot filter bandwidth samples that contain a high-frequency
component [26]. Accordingly, the ACK compression causes a systematic bandwidth over-
estimation when using the Westwood bandwidth estimation scheme. ACK compression is
commonly observed in real network operation [30] and thus should not be neglected in the
estimation scheme.

Another phenomenon that distorts the Westwood estimation scheme is clustering: As
already noted [12, 39], the packets belonging to different TCP connections that share the
same link do not intermingle. As a consequence, many consecutive packets of the same
connection can be observed on a single channel. This means that each connection uses the
full bandwidth of the link for the time needed to transmit its cluster of packets. Hence, a
problem of fairness between TCP connections is experienced when the estimation scheme
does not take the clustering phenomenon into consideration and continues to estimate the
bandwidth of the whole shared bottleneck link instead of their available bandwidth.

Westwood+ estimation scheme [29]: To estimate correctly the bandwidth and alleviate
the effect of ACK compression and clustering, a TCP source should observe its own link
utilization for a time longer than the time needed for entire cluster transmission. For this
purpose, Westwood+ modifies the bandwidth estimation (Bwe) mechanism to perform the
sampling every RTT instead of every ACK reception as follows:

Bwe =
dRT T

RT T
(3)

where dRT T is the amount of data acknowledged during one RT T . As indicated in [29],
the result is a more accurate bandwidth measurement that ensures better performance when
compared with NewReno and it is still fair when sharing the network with other TCP con-
nections. Bwe is updated once per RT T . The bandwidth estimation samples are low-pass
filtered to give a better smoothed estimation of B̂we.

However, the amount of acknowledged data during one RT T (dRT T) is bounded by the
sender’s window size, min(cwnd,rwnd), which is defined by the congestion control algo-
rithm. In fact, min(cwnd,rwnd) defines the maximum amount of data to be transmitted
during one RT T . Consequently, the bandwidth estimation of Westwood+, given by each
sample Bwe, is still always lower than the sender sending rate (Bwe≤ min(cwnd,rwnd)

RT T).
Hence, although the Westwood+ estimation scheme reduces the side effects of ACK

compression and clustering, it is still dependent on the sender sending rate rather than the
available bandwidth of the corresponding TCP connection.

TIBET estimation scheme [12, 11]: TIBET (Time Interval-based Bandwidth Estima-
tion Technique) is another technique that gives a good estimation of bandwidth even in the
presence of packet clustering and ACK compression.

The basic idea of TIBET is to perform a run-time sender-side estimate of the average
packet length and the average inter-arrival separately. The bandwidth estimation scheme is
applied to the stream of the received ACKs and is described in Algorithm 2 [12], where
acked is the number of segments acknowledged by the last ACK, packet size is the average

8 Chiheb Ben Ameur et al.

segment size in bytes, now is the current time and last ack time is the time of the previ-
ous ACK reception. Average packet length and Average interval are the low-pass filtered
measures of the packet length and the interval between sending times.

Algorithm 2 Bandwidth estimation scheme.
1: if ACK isreceived then
2: sample length = acked× packet size×8
3: sample interval = now− last ack time
4: Average packet length = al pha×Average packet length+(1−al pha)× sample length
5: Average interval = al pha×Average interval +(1−al pha)× sample interval
6: Bwe = Average packet length/Average interval
7: end if

Al pha (0 ≤ al pha ≤ 1) is the pole of the two low-pass filters. The value of al pha is
critical to TIBET performance: If al pha is set to a low value, TIBET is highly responsive to
changes in the available bandwidth, but the oscillations of Bwe are quite large. In contrast,
if al pha approaches 1, TIBET produces more stable estimates, but is less responsive to
network changes. Here, we note that if al pha is set to zero we have the Westwood bandwidth
estimation scheme, where the sample Bwe varies between 0 and the bottleneck bandwidth.

TIBET estimation scheme uses a second low-pass filtering, with parameter γ , on the
estimated available bandwidth Bwe to give a better smoothed estimation B̂we, as described
in Equation 2. γ is a variable parameter, equal to e−Tk , where Tk = tk−tk−1 is the time interval
between the two last received ACKs. This means that bandwidth estimation samples Bwe
with high Tk values are given more importance than those with low Tk values.

Simulations [12] indicate that TIBET gives bandwidth estimations very close to the
correct values, even in the presence of other UDP flows with variable rates or other TCP
flows.

3 TcpHas Description

As shown in the previous section, a protocol specific to HAS needs to modify several
TCP parameters and consist of several algorithms. Our HAS-based TCP congestion con-
trol, TcpHas, is based on the two modules of server-based shaping solution: optimal quality
level estimation and sending traffic shaping itself, both with two submodules. The first mod-
ule uses a bandwidth estimator submodule inspired by the TIBET scheme and adapted to
HAS context, and an optimal quality level estimator submodule to define the quality level,̂QLevel, based on the estimated bandwidth. The second module uses ̂QLevel in two submod-
ules that update respectively the values of ssthresh and cwnd over time.

This section progressively presents TcpHas by describing the four submodules, i.e.,
the bandwidth estimator, the optimal quality level estimator, ssthresh updating process, and
cwnd value adaptation to the shaping rate.

3.1 Bandwidth Estimator of TcpHas

As described in Section 2, TIBET performs better than other proposed schemes. It reduces
the effect of ACK compression and packet clustering and is less dependent on the congestion
window than Westwood+.

Performance Evaluation of TcpHas: TCP for HTTP Adaptive Streaming 9

The parameter γ used by TIBET to smooth Bwe estimations (see Equation 2) is variable
and equal to e−Tk . However, this variability is not suited to HAS. Indeed, when the HAS
stream has a large OFF period, the HTTP GET request packet sent from client to server
to ask for a new chunk is considered by the server as a new ACK. As a consequence, the
new bandwidth estimation sample, Bwe, will have an underestimated value and γ will be re-
duced. Hence, this filter gives higher importance to an underestimated value to the detriment
of the previous better estimations. For example, if the OFF period is equal to 1 second, γ

will be equal to 0.36, which means that a factor of 0.64 is given to the new underestimated
value in the filtering process. Consequently, the smoothed bandwidth estimation, B̂we, will
be reduced at each high OFF period. However, the objective is rather to maintain a good esti-
mation of available bandwidth, even in the presence of large OFF periods. For this purpose,
we propose to make parameter γ constant.

Hence, the bandwidth estimator of TcpHas is the same as in the TIBET bandwidth
estimation scheme, except for the low-pass filtering process: we use a constant value of
γ instead of e−Tk as defined by TIBET.

3.2 Optimal Quality Level Estimator of TcpHas

TcpHas’ optimal quality level estimator is based on the estimated bandwidth, B̂we, described
in Subsection 3.1. This estimator is a function that adapts HAS features to TCP congestion
control and replaces B̂we value by the encoding bitrate of the estimated optimal quality level̂QLevel. One piece of information from the application layer is needed: the available video
encoding bitrates, which are specified in the index file of the HAS stream. In TcpHas they
are specified, in ascending order, in the EncodingRate vector. TcpHas’ estimator is defined
by the function QLevelEstimator, described in Algorithm 3, which selects the highest quality
level whose encoding bitrate is equal to or lower than the estimated bandwidth, B̂we.

Algorithm 3 QLevelEstimator function.
1: for i = length(EncodingRate)−1 downto 0 do
2: if EncodingRate[i]≤ B̂we then
3: ̂QLevel = i
4: return
5: end if
6: end for
7: ̂QLevel = 0

̂QLevel parameter is updated only by this function. However, the time and frequency of
its updating is a delicate issue:

– We need to use the adaptive decrease mechanism (see Algorithm 1), because when a
congestion occurs ̂QLevel needs to be updated to the new network conditions. Hence,
this function is called after each congestion detection.

– Given that TcpHas performs a shaping rate that reduces ÔFF occupancy, when TcpHas
detects an ÔFF period, it may mean that some network conditions have changed (e.g.
an incorrect increase of the shaping rate). Accordingly, to better estimate the optimal
quality level, this function is called after each ÔFF period.

10 Chiheb Ben Ameur et al.

The EncodingRate vector is also used by TcpHas during application initialization to
differentiate between a HAS application and a normal one: when the application returns an
empty vector, it is a normal application, and TcpHas just makes this application be processed
by classical TCP, without being involved at all.

3.3 Ssthresh Modification of TcpHas

The TCP variants that use the TCP decrease mechanism use RT Tmin multiplied by the esti-
mated bandwidth, B̂we, to update ssthresh. However, given that the value of ssthresh affects
the convergence speed, it should correspond to the desired shaping rate instead of B̂we. Also,
the shaping rate is defined in Trickle [18] to be 20% higher than the encoding bitrate, which
allows the server to deal better with transient network congestion.

Hence, for TcpHas we decided to replace B̂we by EncodingRate[̂QLevel]× 1.2, which
represents its shaping rate:

ssthresh = EncodingRate[̂QLevel]×RT Tmin×1.2 (4)

The timing of ssthresh updating is the same as that of ̂QLevel: when detecting a conges-
tion event and just after an idle ÔFF period. Moreover, the initial value of ssthresh should
be modified to correspond to the context of HAS. These three points are presented in the
following.

3.3.1 Congestion Events

Inspired by Algorithm 1, the TcpHas algorithm when detecting a congestion event is de-
scribed in Algorithm 4. It includes the two cases of congestion events: three duplicated
ACKs, and retransmission timeout. In both cases, ̂Qlevel is updated from B̂we using the
QLevelEstimator function. Then, ssthresh is updated according to Equation 4. The update
of cwnd is as in Algorithm 1.

Algorithm 4 TcpHas algorithm when congestion occurs.
1: if 3duplicateACKsarereceived then
2: ̂QLevel = QLevelEstimator(B̂we)
3: ssthresh = EncodingRate[̂QLevel]×RT Tmin×1.2
4: if cwnd > ssthresh then
5: cwnd = ssthresh
6: end if
7: end if
8: if retransmissiontimeout expires then
9: ̂QLevel = QLevelEstimator(B̂we)

10: ssthresh = EncodingRate[̂QLevel]×RT Tmin×1.2
11: cwnd = initial cwnd
12: end if

Performance Evaluation of TcpHas: TCP for HTTP Adaptive Streaming 11

3.3.2 Idle Periods

As explained in [4, 8, 9], the congestion window is reduced when the idle period exceeds
the retransmission timeout RTO, and ssthresh is updated to max(ssthresh,3/4× cwnd). In
HAS context, the idle period coincides with the OFF period. In addition, we denote by ÔFF
the OFF period whose duration exceeds RTO. Accordingly, reducing cwnd after an ÔFF
period will force cwnd to switch to slow-start phase although the server is asked to deliver
the video content with the optimal shaping rate.

To avoid this, we propose to remove the cwnd reduction after the ÔFF period. Instead,
as presented in Algorithm 5, TcpHas updates ̂Qlevel and ssthresh, then sets cwnd to ssthresh.
This modification is very useful in the context of HAS. On the one hand, it eliminates the
sending rate reduction after each ÔFF period, which adds additional delay to deliver the
next chunk and may cause a reduction of quality level selection on the player side. On the
other hand, the update of ssthresh each ÔFF period allows the server to adjust its sending
rate more correctly, especially when the client generates a high ÔFF period between two
consecutive chunks.

Algorithm 5 TcpHas algorithm after an ÔFF period.

1: if idle > RTO then . ÔFF period detected
2: ̂QLevel = QLevelEstimator(B̂we)
3: ssthresh = EncodingRate[̂QLevel]×RT Tmin×1.2
4: cwnd = ssthresh
5: end if

3.3.3 Initialization

By default, TCP congestion control uses an initial value of ssthresh, initial ssthresh, of
65535 bytes. The justification comes from the TCP classical goal to occupy quickly (ex-
ponentially) the whole available end-to-end bandwidth.

However, in HAS context, initial ssthresh is better to match an encoding bitrate. We
decided to set it to the highest quality level at the beginning of streaming for two reasons:
1) to give a similar initial aggressiveness as classical TCP and 2) to avoid setting it higher
than the highest encoding bitrate to maintain the HAS traffic shaping concept.

This initialization should be done in conformity with Equation 4, hence the computation
of RTT is needed. Consequently, TcpHas just updates the ssthresh when the first RTT is
computed. In this case, our updated ssthresh serves the same purpose as initial ssthresh.
TcpHas initialization is presented in Algorithm 6.

3.4 Cwnd Modification of TcpHas for Traffic Shaping

As shown in Subsection 2.2, Trickle does traffic shaping on the server-side by setting a max-
imum threshold for cwnd, equal to the shaping rate multiplied by the current RTT. However,
during congestion avoidance phase (i.e., when cwnd > ssthresh), cwnd is increased very
slowly by one MSS each RTT. Consequently, when cwnd is lower than this threshold, it
takes several RTTs to reach it, i.e. a slow reactivity.

12 Chiheb Ben Ameur et al.

Algorithm 6 TcpHas initialization.

1: ̂QLevel = length(EncodingRate)−1 . the highest quality level
2: cwnd = initial cwnd
3: ssthresh = initial ssthresh . i.e. 65535 bytes
4: RT T = 0
5: if newACK isreceived then
6: if RT T 6= 0 then . i.e. when the first RTT is computed
7: ssthresh = EncodingRate[̂QLevel]×RT T ×1.2
8: end if
9: end if

To increase its reactivity, we modify TCP congestion avoidance algorithm by directly
tuning cwnd to match the shaping rate. Given that TcpHas does not change its shaping rate
(EncodingRate[̂QLevel]×1.2) during the congestion avoidance phase (see Subsection 3.2),
we update cwnd according to the RTT variation. However, in this case, we are faced to the
following dilemma related to RTT variation:

– On the one hand, the increase of RTT means that queuing delay increases and could
cause congestion when the congestion window is still increasing. Worse, if the standard
deviation of RTT is important (e.g., in the case of a wireless home network, or unstable
network conditions), an important jitter of RTT would force cwnd to increase suddenly
and cause heavy congestion.

– On the other hand, the increase of RTT over time should be taken into account by the
server in its cwnd updating process. In fact, during the ON period of a HAS stream,
the RTT value is increasing [25]. Consequently, using a constant value of RT T (such
as RT Tmin) does not take into consideration this increase of RTT and may result in a
shaping rate lower than the desirable rate.

One way to mitigate RTT fluctuation and to take into account the increase of RTT during the
ON period is to use smoothed RTT computations. We propose to employ a low-pass filter
for this purpose. The smoothed RTT that is updated at each ACK reception is:

R̂T T k = ψ× R̂T T k−1 +(1−ψ)×RT Tk (5)

where 0≤ ψ ≤ 1. TcpHas algorithm during the congestion avoidance phase is described in
Algorithm 7, where EncodingRate[̂QLevel]×1.2 is the shaping rate.

Algorithm 7 TcpHas algorithm in congestion avoidance phase.
1: if newACK isreceived and cwnd ≥ ssthresh then
2: cwnd = EncodingRate[̂QLevel]× R̂T T ×1.2
3: end if

To sum up, TcpHas is a congestion control optimized for video streaming of type HAS.
It is implemented in the server, at transport layer, no other modifications are needed. TcpHas
needs only one information from the application layer: the encoding bitrates of the selected
video level. It coexists gracefully with TCP on server, the transport layer simply checking
whether the EncodingRate vector returned by application is empty or not, as explained in
section 3.2. It is compatible with all TCP clients.

Performance Evaluation of TcpHas: TCP for HTTP Adaptive Streaming 13

There is no direct interaction between the client and the server to make the adaptation
decision. When TcpHas performs bandwidth estimation (at the server), it is independent
of the estimation made in the HAS player on the client side. The only objective of the
bandwidth estimation of the server is to shape the sending bitrate in order to prevent the HAS
player to select a quality level higher than the optimal one. Hence, the bandwidth estimation
in the server provides a proactive optimization: it limits the sending bitrate before the client
may select an inappropriate quality level.

4 TcpHas Evaluation

The final goal of our work is to implement our idea in real software. However, at this stage of
the work, we preferred instead to use a simulated player because of the classical advantages
of simulation over experimentation, such as reproducibility of results, and measurement of
individual parameters for better parameter tuning. More precisely, we preferred to use a
simulated player instead of a commercial player for the following main reasons:

– First, the commercial players have complex implementation with many parameters. Be-
sides, the bitrate controller is different among commercial players and even between
different versions of the same player. Accordingly, using our own well-controlled player
allows better evaluations than a “black box” commercial player that could give incom-
prehensible behaviors.

– Second, some image-oriented perceptual factors used in a real player (e.g. video spatial
resolution, frame rate or type of video codec) are of no interest for HAS evaluation.

– Third, objective metrics are increasingly employed for HAS evaluation. In reliable flows,
such as those using TCP, objective metrics lead to the same results no matter the file
content. Hence, with a fully controlled simulated player we can easily get the variation
of its parameters during time and use them for objective QoE metric computation.

– Fourth, for our simulations, we need to automatize events such as triggering the begin-
ning and the end of HAS flows at precise moments. Using a simulated player offers eas-
ier manipulation than a real player, especially when many players need to be launched
simultaneously.

In this section, we evaluate TcpHas using the classical ns-3 simulator, version 3.17. In
our scenario, several identical HAS players share the same bottleneck link and compete for
bandwidth inside a home network. We first describe the network setup used in all of the
simulations. Then, we describe the parameter settings of TcpHas. Afterwards, we show the
behavior of TcpHas compared to the other methods. Finally, after describing the QoE and
QoS metrics used, we analyze results for 1 to 9 competing HAS flows in the home network
and with background traffic.

4.1 Simulation setup

Fig. 2 presents the architecture we used, which is compliant with the fixed broadband access
network architecture used by Cisco to present its products [15]. The HAS clients are located
inside the home network, a local network with 100 Mbps bandwidth. The Home Gateway
(HG) is connected to the DSLAM. The bottleneck link is located between HG and DSLAM
and has 8 Mbps. The queue of the DSLAM uses Drop Tail discipline with a length that
corresponds to the bandwidth-delay product. Nodes BNG (Broadband Network Gateway)

14 Chiheb Ben Ameur et al.

HAS module

Emulated
HAS players

Fixed broadband access network

Drop Tail algorithm
queue length = BW×delay

H
A

S se
rve

rs
HAS clients

HG
Bottleneck

link BNG

C0 C1 CN-2 CN-1

DSLLink AggLine ISPLink

100 Mbps
2 ms

IR

S1

SN-2

LAN 192.168.0.0/24
csma 100 Mbps

PPBP sink PPBP source
1

0
0

 M
b

p
s

2
 m

s

1
0

0
 M

b
p

s
2

 m
s

DSLAM

10 Gbps
2 ms

Internet traffic
emulation

PPBP overall
bitrate of 40 Mbps

Poisson Pareto Burst Process

SN-1

8 Mbps
 2ms

S0

Fig. 2 Network architecture used in ns-3 for the evaluation.

and IR (Internet Router), and links AggLine (that simulates the aggregate line), ISPLink
(that simulates the Internet Service Provider core network) and NetLink (that simulates the
route between the IR and the HAS server) are configured so that their queues are large
enough (1000 packets) to support a large bandwidth of 100 Mbps and high delay of 100 ms
without causing significant packet losses.

We generate Internet traffic that crosses ISPLink and AggLine, because the two simu-
lated links are supposed to support a heavy traffic from ISP networks. For Internet traffic,
we use the Poisson Pareto Burst Process (PPBP) model [40], considered as a simple and
accurate traffic model that matches statistical properties of real-life IP networks (such as
their bursty behavior). PPBP is a process based on the overlapping of multiple bursts with
heavy-tailed distributed lengths. Events in this process represent points of time at which one
of an infinite population of users begins or stops transmitting a traffic burst. PPBP is closely
related to the M/G/∞ queue model [40]. We use the PPBP implementation in ns-3 [5, 6]. In
our configuration, the overall rate of PPBP traffic is 40 Mbps, which corresponds to 40% of
ISPLink capacity.

The ns-3 simulated TcpHas player we use is similar to the emulated player described
in [9], with a chunk duration of 2 seconds and a playback buffer of 30 seconds (maximum
video size the buffer can hold). Note that [9] compares four TCP variants and two router-
based traffic shaping methods, whereas the current article proposes a new congestion control
to be executed on server. Our player is classified as Rate and Buffer based (RBB) player,
following classification proposed in [38, 37]. Using buffer occupancy information is increas-
ingly proposed and used due to its advantages for reducing stalling events. In addition, the
bandwidth estimator we used consists in dividing the size of received chunk by its down-
load duration. The buffer occupancy information is used only to define an aggressiveness
level of the player, which allows the player to ask a quality level higher than the estimated
bandwidth. The player uses HTTP GET requests to ask for each chunk. It has two phases:
buffering and steady state. During buffering phase it fills up its playback buffer by asking for
chunks of the lowest video quality level, each chunk immediately after the other. When the
playback buffer fills up, the player switches to the steady state phase. In this phase, it asks
for the next chunk of the estimated quality level each time the playback buffer occupancy
drops for more than 2 seconds (i.e. it remains less than 28 seconds of video in the buffer).
When the playback buffer is empty, the player re-enters the buffering phase.

Performance Evaluation of TcpHas: TCP for HTTP Adaptive Streaming 15

Table 1 Available encoding bitrates for the video file used in simulations.

Video quality level LC−S 0 1 2 3 4
Encoding bitrate (kbps) 248 456 928 1632 4256

All tests use five video quality levels with constant encoding rates presented in Table 1,
and correspond to the quality levels usually used by many video service providers. Since
objective metrics are used, cf. section 4, and given that TCP use ensures that all packets
arrive to the destination, the exact video type used does not influence results (in our case we
used random bits for the video file).

We also use the HTTP traffic generator module given in [13, 14]. This module allows
communication between two nodes using HTTP protocol, and includes all features that gen-
erate and control HTTP GET Request and HTTP response messages. We wrote additional
code into this HTTP module by integrating the simulated HAS player. We call this imple-
mentation the HAS module, as presented in Fig. 2. Streaming is done from S f to C f , where
0≤ f < N. The round-trip propagation delay between S f and C f is 100 ms.

We show results for TcpHas, Westwood+, TIBET and Trickle. We do not consider West-
wood because Westwood+ is supposed to replace Westwood since it performs better in case
of ACK compression and clustering. Concerning Trickle, it is a traffic shaping method that
was proposed in the context of progressive download, as described in SubSection 2.2. In
order to adapt it to HAS, we added to it the estimator of optimal quality level of TcpHas, the
adaptive decrease mechanism of Westwood+ (the same as TIBET), and applied the Trickle
traffic shaping based on the estimated optimal quality level. This HAS adaptation of Trickle
is simply denoted by “Trickle” in the reminder of this article.

For all evaluations, we use competing players that are playing simultaneously during K
seconds. We set K = 180 seconds, which allows the HAS players to reach stationary behavior
when they are competing for bandwidth [21].

4.2 TcpHas Parameter Settings

The parameter γ of the B̂we low-pass filter is constant, in conformity with Subsection 3.1.
We set γ = 0.99 to reduce the oscillation of bandwidth estimations, B̂we, over time. We set
initial cwnd = 2×MSS.

The initial bandwidth estimation value of B̂we is set to the highest encoding bitrate. If
the first value was set to zero or to the first estimation sample, the low-pass filtering process
with parameter γ = 0.99 would be too slow to reach the correct estimation. In addition, we
want TcpHas to quickly reach the highest quality level at the beginning of the stream, as
explained in Subsection 3.3.

The parameter al pha of the TIBET estimation scheme (see Algorithm 2) is chosen em-
pirically in our simulations and is set to 0.8. A higher value produces more stable estimations
but is less responsive to network changes, whereas a lower value makes TcpHas more ag-
gressive with a tendency to select the quality level that corresponds to the whole bandwidth
(unfairness).

The parameter ψ used for low-pass filtering the RTT measurements in Subsection 3.4 is
set to 0.99. The justification for this value is that it reduces better the RTT fluctuations, and
consequently reduces cwnd fluctuation during the congestion avoidance phase.

16 Chiheb Ben Ameur et al.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

Time (s)

Q
ua

lit
y

le
ve

l i
nd

ex

Selected quality level

0 20 40 60 80 100 120 140 160 180
0

1

2

3

Time (s)

Q
ua

lit
y

le
ve

l i
nd

ex

Selected quality level

Westwood+. TIBET.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

Time (s)

Q
ua

lit
y

le
ve

l i
nd

ex

Selected quality level

0 20 40 60 80 100 120 140 160 180
0

1

2

3

Time (s)

Q
ua

lit
y

le
ve

l i
nd

ex

Selected quality level

Trickle. TcpHas.

Fig. 3 Quality level selection over time for the four methods compared.

4.3 TcpHas Behavior Compared to the Other Methods

We present results for a scenario with 8 competing identical clients.
Figure 3 shows the quality level selection over time of one of the competing players for

the above methods. The optimal quality level that should be selected by the competing play-
ers is n◦ 2. During the buffering phase, all players select the lowest quality level, as allows by
slow start phase. However, during the steady-phase the results diverge: Westwood+ player
frequently changes the quality level between n◦ 0 and n◦ 3, which means that not only the
player produces an unstable HAS stream, but also a high risk of generating stalling events.
TIBET player is more stable and presents less risk of stalling events. Trickle player has an
improved performance and becomes more stable around the optimal quality level n◦ 2, with
some oscillations between quality levels n◦ 1 and n◦ 3. In contrast, TcpHas player is stable
at the optimal quality level during the steady-state phase, hence it performs the best among
all the methods.

Given that the congestion control algorithms of these four methods use bandwidth es-
timation B̂we to set ssthresh, it is interesting to present B̂we variation over time, shown in
Figure 4. The optimal B̂we estimation should be equal to the bottleneck capacity (8 Mbps)
divided by the number of competing HAS clients (8), i.e., 1 Mbps. For Westwood+, B̂we
varies between 500 kbps and 2 Mbps. For TIBET, B̂we is more stable but varies between 1.5
Mbps and 2 Mbps, which is greater than the average of 1 Mbps; this means that an unfair-
ness in bandwidth sharing occurred because this player is more aggressive than the other 7
competing players. For TcpHas, B̂we begins by the initial estimation that corresponds to the
encoding bitrate of the highest quality level (4256 kbps), as described in Algorithm 6, then
B̂we converges rapidly to the optimal estimation value of 1 Mbps. Both Trickle and TcpHas
present a similar B̂we shape because they use the same bandwidth estimator.

The dissimilarity between the four algorithms is more visible in Figure 5, which presents
the variation of cwnd and ssthresh. Westwood+ and TIBET yield unstable ssthresh and even
more unstable cwnd. In contrast, Trickle and TcpHas provide stable ssthresh values. For
Trickle, cwnd is able to increase to high values during the congestion avoidance phase be-
cause Trickle limits the congestion window by setting an upper bound in order to have
a sending bitrate close to the encoding bitrate of the optimal quality level. For TcpHas,
ssthresh is stable at around 14 kB, which corresponds to the result of Equation 4 when̂QLevel = 2 and RT Tmin = 100ms. Besides, cwnd is almost in the same range as ssthresh

Performance Evaluation of TcpHas: TCP for HTTP Adaptive Streaming 17

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

Time (s)

B
w

e
(k

bp
s)

Estimated bandwidth

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

Time (s)

B
w

e
(k

bp
s)

Estimated bandwidth

Westwood+. TIBET.

0 20 40 60 80 100 120 140 160 180
0

1000

2000

3000

4000

5000

Time (s)

B
w

e
(k

bp
s)

Estimated bandwidth

0 20 40 60 80 100 120 140 160 180
0

1000

2000

3000

4000

5000

Time (s)

B
w

e
(k

bp
s)

Estimated bandwidth

Trickle. TcpHas.

Fig. 4 Estimated bandwidth B̂we over time for the four methods compared.

0 20 40 60 80 100 120 140 160 180
0

2

4

6

x 104

Time (s)

N
um

be
r

of
 B

yt
es

cwnd
ssthresh

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8
x 104

Time (s)

N
um

be
r

of
 B

yt
es

cwnd
ssthresh

Westwood+. TIBET.

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8
x 104

Time (s)

N
um

be
r

of
 B

yt
es

cwnd
ssthresh

0 20 40 60 80 100 120 140 160 180
0

2

4

6

x 104

Time (s)

N
um

be
r

of
 B

yt
es

cwnd
ssthresh

Trickle. TcpHas.

Fig. 5 cwnd and ssthresh values over time for the four methods compared.

and increases during ON periods because it takes into acocount the increase of RTT as pre-
sented in Algorithm 7.

4.4 QoE and QoS Metrics

This subsection describes the specific QoE and QoS metrics we selected to evaluate objec-
tively TcpHas, and justify their importance in our evaluation.

4.4.1 QoE Metrics

We use three QoE metrics described by formulas in [8, 9]: the instability of video quality
level [8, 9, 22] (0% means the same quality, 100% means the quality changes each period),
the infidelity to the optimal quality level [8, 9] (percentage in seconds where the optimal
quality is used), and the convergence speed to the optimal quality level [8, 9, 21] (time to
stabilize on the optimal quality and be stable over at least 1 minute). The optimal quality
level LC−S,opt used in our evaluation is given by the highest encoding bitrate among the
quality levels which is lower than or equal to the ratio between the bottleneck bandwidth,

18 Chiheb Ben Ameur et al.

avail bw, and the number of competing HAS players, N, as follows:

LC−S,opt =

{
max

0≤LC−S≤4
(LC−S)

∣∣∣∣ EncodingRate(LC−S)×1.2≤ avail bw
N

}
(6)

This formula applies to all the flows, i.e., we attach the same optimal quality level to
all flows; this is because our focus is on fairness among flows. We acknowledge that this
does not use the maximum achievable bandwidth in some cases, for example for six clients
sharing an 8 Mbps bottleneck link, the above formula gives 928 kbps for each client, and not
928 kbps for five clients and 1632 kbps for the sixth client (see Table 1 for the bitrates). We
however noticed that TcpHas does maximize the bandwidth use in some cases, as presented
in the next section.

The fourth metric is the initial delay, metric adopted by many authors [23, 34], which
accounts for the fact that the user dislikes to wait a long time before the beginning of video
display.

The fifth metric is the stalling event rate; the user is highly disturbed when the video
display is interrupted while concentrating on watching [20]. We define the stalling event rate,
StallingRate(K), as the number of stalling events during a K-second test duration, divided
by K and multiplied by 100:

StallingRate(K) =
number o f stallingeventsduringK seconds

K
×100 (7)

The greater the StallingRate(K), the greater the dissatisfaction of the user. A streaming
technology must try as much as possible to have a zero stalling event rate.

4.4.2 QoS Metrics

We use four QoS metrics, described in the following.
The first metric is the frequency of ÔFF periods [8, 9]. ÔFF is an OFF period whose

duration exceeds TCP retransmission timeout duration (RTO); such periods lead to a reduc-
tion of bitrate and potentially to a degradation of performance [8, 9]. This metric is defined
as the total number of ÔFF periods divided by the total number of downloaded chunks of
one HAS flow:

f rÔFF =
number o f ÔFF periods

number o f chunks
(8)

A high queuing delay is harmful to HAS and for real-time applications [36]. We noticed
in our tests that this delay could vary considerably, and so the RTT of the HAS flow, so we
use as the second metric the average queuing delay, defined as:

DelayC−S(K) = RT TC−S,mean(K)−RT T 0
C−S (9)

where RT TC−S,mean(K) is the average among all RT TC−S samples of the whole HAS session
between client C and server S for a K-second test duration, and RT T 0

C−S is the initial round-
trip propagation delay between the client C and the server S.

The congestion detection events greatly influence both QoS and QoE of HAS because
the server decreases its sending rate at each such event. This event is always accompanied
by a ssthresh reduction. Hence, we use a third metric, congestion rate, which we define as
the rate of congestion events detected on the server side:

CNGC−S(K) =
Dssthresh

C−S (K)

K
×100 (10)

Performance Evaluation of TcpHas: TCP for HTTP Adaptive Streaming 19

where Dssthresh
C−S (K) is the number of times the ssthresh has been decreased for the C–S HAS

session during the K-second test duration.
The fourth metric we use is the average packet drop rate. The rationale is that the number

of dropped packets at the bottleneck gives an idea of the congestion severity of the bottleneck
link. We define this metric as the average packet drop rate at the bottleneck during a K-
second test duration:

DropPkt(K) =
number o f dropped packetsduringK seconds

K
×100 (11)

Note that this metric is different from the congestion rate described above, because the TCP
protocol at the server could detect a congestion event whereas there is no packet loss.

4.5 Performance Evaluation

In this subsection we evaluate objectively the performance of TcpHas compared to West-
wood+, TIBET and Trickle. For this, we give and comment results of evaluation in two
scenarios: when increasing the number of competing HAS flows in the home network and
when increasing the background traffic in access network.

We use 16 runs for each simulation. We present the mean value for QoE and QoS among
the competing players and among the number of runs for each simulation. We present the
performance unfairness measurements among HAS clients with vertical error bars. We chose
16 runs because the relative difference between mean value of instability and infidelity of
16 and 64 runs is less than 4%.

4.5.1 Effect of Increasing the Number of HAS Flows

Here, we vary the number of competing players from 1 to 9. We select a maximum of 9
competing HAS clients because in practice the number of users inside a home network does
not exceed 9.

QoE results are given in Figure 6. In this Figure, the lowest instability rate is that of
TcpHas (less than 4%), with a negligible instability unfairness between players. Trickle
shows a similar instability rate when the number of competing players is between 4 and 7,
but for the other cases it has a high instability rate, whose cause is that Trickle does not take
into consideration the reduction of cwnd during ÔFF periods which causes a low sending
rate after each ÔFF period. Hence, Trickle is sensitive to ÔFF : we can see in the Figure
a correlation between instability and frequency of ÔFF period. In contrast, the instability
of Westwood+ and TIBET is much greater and increases with the number of competing
players. The infidelity and convergence speed of TcpHas are satisfactory, as presented in
the Figure: the infidelity rate is less than 30% and convergence speed is smaller than 50
seconds in all but two cases. When there are 5 or 9 competing HAS clients, TcpHas selects
a quality level higher than the optimal quality level that we defined (equation 6); TcpHas
is thus able to select a higher quality level, converge to it, and be stable on it for the whole
duration of the simulation. This result is rather positive, because TcpHas is able to maximize
the occupancy of the home bandwidth to almost 100% in these two particular cases. In
contrast, Westwood+ and TIBET present high infidelity to the optimal quality level and have
difficulties to converge to it. For Trickle, due to its traffic shaping algorithm, the infidelity
rate is lower than 45%, and lower than 25% when the ÔFF frequency (hence the instability
rate) is low.

20 Chiheb Ben Ameur et al.
Feuille2

Page 1

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25 Westwood+ Trickles
TIBET TcpHas

Number of competing HAS players

In
st

ab
ili

ty
 IS

 (%
)

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100 Westwood+ Trickles
TIBET TcpHas

Number of competing HAS players

In
fid

el
ity

 IF
 (%

)

1 2 3 4 5 6 7 8 9
0

50

100

150

200

250 Westwood+ Trickles
TIBET TcpHas

Number of competing HAS playersC
on

ve
rg

en
ce

 s
pe

ed
 (s

)

Feuille2

Page 1

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25 Westwood+ Trickles
TIBET TcpHas

Number of competing HAS players

In
st

ab
ili

ty
 IS

 (%
)

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100 Westwood+ Trickles
TIBET TcpHas

Number of competing HAS players

In
fid

el
ity

 IF
 (%

)

1 2 3 4 5 6 7 8 9
0

50

100

150

200

250 Westwood+ Trickles
TIBET TcpHas

Number of competing HAS playersC
on

ve
rg

en
ce

 s
pe

ed
 (s

)Instability. Infidelity.

Feuille2

Page 1

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25 Westwood+ Trickles
TIBET TcpHas

Number of competing HAS players
In

st
ab

ili
ty

 IS
 (%

)

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100 Westwood+ Trickles
TIBET TcpHas

Number of competing HAS players

In
fid

el
ity

 IF
 (%

)

1 2 3 4 5 6 7 8 9
0

50

100

150

200

250 Westwood+ Trickles
TIBET TcpHas

Number of competing HAS playersC
on

ve
rg

en
ce

 s
pe

ed
 (s

)

Feuille3

Page 1

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10
Westwood+ Trickles
TIBET TcpHas

Number of competing HAS players

In
iti

al
 d

el
ay

 (s
)

1 2 3 4 5 6 7 8 9
0

0,2

0,4

0,6

0,8

1
Westwood+ Trickles
TIBET TcpHas

Number of competing HAS playersFr
eq

ue
nc

y
of

 O
FF

*

1 2 3 4 5 6 7 8 9
0

10
20
30
40
50
60
70
80

Westwood+ Trickles
TIBET TcpHas

Number of competing HAS playersQ
ue

ui
ng

 d
el

ay
 (m

s)
Convergence speed. Initial delay.

Feuille4

Page 1

1 2 3 4 5 6 7 8 9
0

10
20
30
40
50
60 Westwood+ Trickles

TIBET TcpHas

Number of competing HAS players

C
on

ge
st

io
n

ra
te

1 2 3 4 5 6 7 8 9
0

100
200
300
400
500
600

Westwood+ Trickles
TIBET TcpHas

Number of competing HAS players

D
ro

pP
kt

1 2 3 4 5 6 7 8 9
0

0,05

0,1

0,15

0,2

0,25

Number of competing HAS playersSt
al

lin
g

ev
en

ts
 ra

te Westwood+ Trickles
TIBET TcpHas

Stalling event rate.

Fig. 6 Values of QoE metrics when increasing the number of competing HAS clients for the four methods
compared.

The initial delay of the four methods increases with the number of competing HAS
clients, as presented in Figure 6. The reason is that during the buffering phase the HAS
player asks for chunks successively, and when the number of competing HAS clients in-
creases, the bandwidth share for each flow decreases, thus generating additional delay. We
also notice that Westwood+, TIBET and TcpHas present initial delay in the same range of
values. However, Trickle has a lower delay; the reason is that, as shown in figures 4 and 5,
during buffering state Trickle is able to maintain the initial bandwidth estimation that corre-
sponds to the encoding bitrate of the highest quality level and does not provoke congestions.
In other words, Trickle is able to send video chunks with a high sending bitrate without
causing congestions. This leads to the reduction of the initial delay.

Finally, Figure 6 shows that TcpHas and Trickle generate no stalling events, whereas
Westwood+ and TIBET do starting from 7 competing HAS clients. The result for TcpHas
and Trickle comes from their high stability rate even for a high number of competing HAS
clients.

QoS results are given in Figure 7. It shows that the ÔFF period frequency of TcpHas
is kept near to zero and much lower than Westwood+, TIBET and Trickle, except in the
case when the home network has only one HAS client. In this case, the optimal quality level
is n◦4 whose encoding rate is 4.256 Mbps. Hence, the chunk size is equal to 8.512 Mbits.
Consequently, when TcpHas shapes the sending rate according to this encoding rate while
delivering chunks with large sizes, it would be difficult to reduce OFF periods below the
retransmission timeout duration, RTO. Note that we have taken this case into account when
proposing TcpHas by eliminating the initialization of cwnd after idle periods, as explained
in Algorithm 5, to preserve high QoE.

Performance Evaluation of TcpHas: TCP for HTTP Adaptive Streaming 21

Feuille3

Page 1

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10
Westwood+ Trickles
TIBET TcpHas

Number of competing HAS players
In

iti
al

 d
el

ay
 (s

)

1 2 3 4 5 6 7 8 9
0

0,2

0,4

0,6

0,8

1
Westwood+ Trickles
TIBET TcpHas

Number of competing HAS playersFr
eq

ue
nc

y
of

 O
FF

*

1 2 3 4 5 6 7 8 9
0

10
20
30
40
50
60
70
80

Westwood+ Trickles
TIBET TcpHas

Number of competing HAS playersQ
ue

ui
ng

 d
el

ay
 (m

s)

Feuille3

Page 1

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10
Westwood+ Trickles
TIBET TcpHas

Number of competing HAS players

In
iti

al
 d

el
ay

 (s
)

1 2 3 4 5 6 7 8 9
0

0,2

0,4

0,6

0,8

1
Westwood+ Trickles
TIBET TcpHas

Number of competing HAS playersFr
eq

ue
nc

y
of

 O
FF

*

1 2 3 4 5 6 7 8 9
0

10
20
30
40
50
60
70
80

Westwood+ Trickles
TIBET TcpHas

Number of competing HAS playersQ
ue

ui
ng

 d
el

ay
 (m

s)

Frequency of ÔFF periods. Queuing delay.Feuille4

Page 1

1 2 3 4 5 6 7 8 9
0

10
20
30
40
50
60 Westwood+ Trickles

TIBET TcpHas

Number of competing HAS players

C
on

ge
st

io
n

ra
te

1 2 3 4 5 6 7 8 9
0

100
200
300
400
500
600

Westwood+ Trickles

Number of competing HAS players

D
ro

pP
kt

1 2 3 4 5 6 7 8 9
0

0,05

0,1

0,15

0,2

0,25 Westwood+ Trickles
TIBET

Number of competing HAS playersSt
al

lin
g

ev
en

ts
 ra

te

Feuille4

Page 1

1 2 3 4 5 6 7 8 9
0

10
20
30
40
50
60 Westwood+ Trickles

TIBET TcpHas

Number of competing HAS players

C
on

ge
st

io
n

ra
te

1 2 3 4 5 6 7 8 9
0

100
200
300
400
500
600

Westwood+ Trickles
TIBET TcpHas

Number of competing HAS players

D
ro

pP
kt

1 2 3 4 5 6 7 8 9
0

0,05

0,1

0,15

0,2

0,25

Number of competing HAS playersSt
al

lin
g

ev
en

ts
 ra

te Westwood+ Trickles
TIBET TcpHas

Congestion rate. Packet drop rate.

Fig. 7 Values of QoE metrics when increasing the number of competing HAS clients for the four methods
compared.

As presented in Figure 7, although the queuing delay of the four methods increases
with the number of competing HAS clients, TcpHas and Trickle present a lower queuing
delay than Westwood+ and TIBET. The reason is that both TcpHas and Trickle shape the
HAS flows by reducing the sending rate of the server which reduces queue overflow in
the bottleneck. Additionally, we observe that TcpHas reduces better the queuing delay than
Trickle; TcpHas has roughly half the queuing delay of Westwood+ and TIBET. Besides,
TcpHas does not increase its queuing delay more than 25 ms even for 9 competing players,
while Trickle increases it to about 50 ms. This result is mainly due to the high stability of the
HAS quality level generated by TcpHas which offers better fluidity of HAS flows inside the
bottleneck. The same reason applies for the very low congestion detection rate and packet
drop rate at the bottleneck of TcpHas, given in Figure 7. Furthermore, the congestion rate
of Trickle is correlated to its frequency of ÔFF periods; this means that ssthresh reduction
of Trickle is principally caused by the detection of ÔFF periods. In addition, due to its
corresponding traffic shaping method that reduces the sending rate of HAS server, the packet
drop rate of Trickle is quite similar to that of TcpHas, as shown in Figure 7.

To summarize, TcpHas is not affected by the increase of the competing HAS clients
in the same home network. From QoE point of view, it preserves high stability and high
fidelity to optimal quality level, and has a tendency to increase the occupancy of the home
bandwidth. From QoS point of view, it maintains a low ÔFF period duration, low queuing
delay, and low packet drop rate.

4.5.2 Background Traffic Effect

Here we vary the burst arrival rate λp of the Poisson Pareto Burst Process (PPBP) that
simulates the traffic that crosses Internet Router (IR) and DSLAM from 10 to 50. Table 2
shows the percentage of occupancy of the 100 Mbps ISP network (ISPLink in our network)
for each selected λp value (without counting HAS traffic). Hence, we simulate a background
traffic in the ISP network ranging from 20% to 100% of network capacity. In our simulations,
we used two competing HAS clients inside the same home network.

22 Chiheb Ben Ameur et al.

Table 2 ISP network load when varying the burst arrival rate λp.

λp 10 15 20 25 30 35 40 45 50
ISP network load (%) 20 30 40 50 60 70 80 90 100

10 15 20 25 30 35 40 45 50
0

5

10

15

20 Westwood+ TcpHas
TIBET Trickle

PPBP burst arrival rate λp

In
st

ab
ili

ty
 I

S
 (

%
)

10 15 20 25 30 35 40 45 50
0

20

40

60

80

100 Westwood+ TcpHas
TIBET Trickle

PPBP burst arrival rate λp

In
fi

d
el

it
y

IF
 (

%
)

Instability. Infidelity.

10 15 20 25 30 35 40 45 50
0

50

100

150

200

250 Westwood+ TIBET
Trickle TcpHas

PPBP burst arrival rate λpC
o

n
ve

rg
en

ce
 s

p
ee

d
 V

 (
s)

10 15 20 25 30 35 40 45 50
0

1

2

3

4

5
Westwood+ TIBET
Trickle TcpHas

PPBP burst arrival rate λp

In
it

ia
l

d
el

ay
 (

s)

Convergence speed. Initial delay.

10 15 20 25 30 35 40 45 50
0

0,5

1

1,5

2

2,5

3 Westwood+ TIBET
Trickle TcpHas

PPBP burst arrival rate λp

S
ta

lli
n

g
 e

ve
n

ts
 r

at
e

Stalling event rate.

Fig. 8 Values of QoE metrics when increasing the burst arrival rate for the four methods compared.

QoE results are given in Figure 8. It shows that the instability, infidelity, convergence
speed and stalling event rate curves of TcpHas present two different regimes. When λp < 35,
TcpHas keeps practically the same satisfying measurements much better than Westwood+,
TIBET and Trickle. However, when λp > 35, the four measurements degrade suddenly and
stabilize around same high values; even for infidelity and stalling rate, TcpHas yields worse
values than Weswood+, TIBET and Trickle. We deduce that TcpHas is sensitive to addi-
tional load of ISP network, and could be more harmful than the three other methods. Trickle
presents relatively better performance than Westwood+ and TIBET in terms of average val-
ues. However, it presents higher unfainess between clients, as shown by its big vertical error
bars. In addition, we observe that TcpHas presents the same initial delay as the other meth-
ods, which is around 3 seconds, and does not exceed 5 seconds and does not disturb the
user’s QoE.

QoS results are presented in Figure 9. Westwood+, TIBET and Trickle present high
frequency of ÔFF periods, which decreases when increasing the ISP network load, whereas
TcpHas presents low ÔFF frequency. The average queuing delay generated by TcpHas
is lower than that of Westwood+, TIBET and Trickle for λp < 40. The reason for this is
explained in the Figure: the congestion detection rate increases with λp (especially above
40), while the packet drop rate at the bottleneck is still null for TcpHas. Hence, we deduce

Performance Evaluation of TcpHas: TCP for HTTP Adaptive Streaming 23

10 15 20 25 30 35 40 45 50
0

0,1

0,2

0,3

0,4

0,5

0,6 Westwood+ TIBET
Trickle TcpHas

PPBP burst arrival rate λp

fr
O

F
F

*

10 15 20 25 30 35 40 45 50
0
10
20
30
40
50
60
70
80

Westwood+ TIBET

Trickle TcpHas

PPBP burst arrival rate λpA
ve

ra
g

e
q

u
eu

in
g

 d
el

a
y

(m
s)

10 15 20 25 30 35 40 45 50
0
10
20
30
40
50
60
70
80

Westwood+ TIBET

Trickle TcpHas

PPBP burst arrival rate λp Q
u

e
u

in
g

 d
e

la
y

 (
m

s
)

Frequency of ÔFF periods. Queuing delay.

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50
Westwood+ TIBET
Trickle TcpHas

PPBP burst arrival rate λp

C
N

G

10 15 20 25 30 35 40 45 50
0
10
20
30
40
50
60
70
80 Westwood+ TIBET

Trickle TcpHas

PPBP burst arrival rate λp

D
ro

p
P

kt
Congestion rate. Packet drop rate.

Fig. 9 Values of QoS metrics when increasing the burst arrival rate for the four methods compared.

that the bottleneck is no more located in the link between DSLAM and IR, but is rather
transposed inside the loaded ISP link.

To summarize, TcpHas yields very good QoE and QoS results when the ISP link is not
too loaded. Beyond 70% load of the ISP link, the congestion rate increases, which degrades
the QoS and forces TcpHas to frequently update its estimated optimal quality level, which
in turn degrades the QoE.

5 Conclusion

This paper presents and analyses server-based shaping methods that aim to stabilize the
video quality level and improve the QoE of HAS users.

Based on this analysis, we propose and describe TcpHas, a HAS-based TCP congestion
control that acts like a server-based HAS traffic shaping method. It is inspired by the TCP
adaptive decrease mechanism and uses the end-to-end bandwidth estimation of TIBET to
estimate the optimal quality level. Then, it shapes the sending rate to match the encoding bi-
trate of the estimated optimal quality level. The traffic shaping process is based on updating
ssthresh when detecting a congestion event or after an idle period, and on modifying cwnd
during the congestion avoidance phase.

We evaluate TcpHas in the case of HAS clients that share the bottleneck link and are
competing for the same home network under various conditions. Simulation results indicate
that TcpHas considerably improves both HAS QoE and network QoS. Concerning QoE, it
offers a high stability, high fidelity to optimal quality level, a rapid convergence speed, and
an acceptable initial delay. Concerning QoS, it reduces the frequency of large OFF periods
that exceed TCP retransmission timeout, reduces queuing delay, and reduces considerably
the packet drop rate in the shared bottleneck queue. TcpHas performs well when increasing
the number of competing HAS clients and does not cause stalling events. It shows excellent
performance for small and medium loaded ISP network.

As future work, we plan to implement TcpHas in real DASH servers of a video content
provider, and to offer a large-scale evaluation during a long duration of tests in real and

24 Chiheb Ben Ameur et al.

variable network conditions when hundreds of DASH players located in different access
networks are asking for video content.

References

1. Abdallah A, Meddour DE, Ahmed T, Boutaba R (2010) Cross layer optimization ar-
chitecture for video streaming in WiMAX networks. In: 2010 IEEE Symposium on
Computers and Communications (ISCC), IEEE, pp 8–13

2. Akhshabi S, Anantakrishnan L, Begen AC, Dovrolis C (2012) What happens when
HTTP adaptive streaming players compete for bandwidth? In: Proceedings of the 22nd
international workshop on Network and Operating System Support for Digital Audio
and Video, ACM, pp 9–14

3. Akhshabi S, Anantakrishnan L, Dovrolis C, Begen AC (2013) Server-based traffic shap-
ing for stabilizing oscillating adaptive streaming players. In: 23rd ACM Workshop on
Network and Operating Systems Support for Digital Audio and Video, ACM, pp 19–24

4. Allman M, Paxson V, Blanton E (2009) TCP congestion control. RFC 5681
5. Ammar D (2016) PPBP in ns-3. https://codereview.appspot.com/4997043
6. Ammar D, Begin T, Guerin-Lassous I (2011) A new tool for generating realistic in-

ternet traffic in ns-3. In: 4th International ICST Conference on Simulation Tools and
Techniques, pp 81–83

7. Ben Ameur C, Mory E, Cousin B (2014) Shaping HTTP adaptive streams using re-
ceive window tuning method in home gateway. In: IEEE International Conference on
Performance Computing and Communications (IPCCC), pp 1–2

8. Ben Ameur C, Mory E, Cousin B (2015) Evaluation of gateway-based shaping methods
for HTTP adaptive streaming. In: Quality of Experience-based Management for Future
Internet Applications and Services (QoE-FI) Workshop, IEEE International Conference
on Communications (ICC), London, UK, pp 1–6

9. Ben Ameur C, Mory E, Cousin B (2016) Combining traffic shaping methods with con-
gestion control variants for HTTP adaptive streaming. Multimedia Systems pp 1–18

10. Ben Ameur C, Mory E, Cousin B, Dedu E (2017) TcpHas: TCP for HTTP adaptive
streaming. In: IEEE International Conference on Communications (ICC), IEEE, Paris,
France, pp 1–7

11. Capone A, Martignon F, Palazzo S (2001) Bandwidth estimates in the TCP congestion
control scheme. In: Thyrrhenian International Workshop on Digital Communications:
Evolutionary Trends of the Internet (IWDC), Springer, pp 614–626

12. Capone A, Fratta L, Martignon F (2004) Bandwidth estimation schemes for TCP over
wireless networks. IEEE Transactions on Mobile Computing 3(2):129–143

13. Cheng Y (2016) HTTP traffic generator. https://codereview.appspot.com/

4940041

14. Cheng Y, Çetinkaya EK, Sterbenz JP (2013) Transactional traffic generator implementa-
tion in ns-3. In: 6th International ICST Conference on Simulation Tools and Techniques,
pp 182–189

15. Cisco (2013) Broadband network gateway overview. http://www.cisco.com/c/en/
us/td/docs/routers/asr9000/software/asr9k_r4-3/bng/configuration/

guide/b_bng_cg43xasr9k/b_bng_cg43asr9k_chapter_01.html

16. Dedu E, Ramadan W, Bourgeois J (2015) A taxonomy of the parameters used by de-
cision methods for adaptive video transmission. Multimedia Tools and Applications
74(9):2963–2989

Performance Evaluation of TcpHas: TCP for HTTP Adaptive Streaming 25

17. Floyd S, Handley M, Padhye J, Widmer J (2008) TCP Friendly Rate Control (TFRC):
Protocol specification. RFC 5348

18. Ghobadi M, Cheng Y, Jain A, Mathis M (2012) Trickle: Rate limiting youtube video
streaming. In: Usenix Annual Technical Conference, Boston, MA, USA, pp 191–196

19. Hoquea MA, Siekkinena M, Nurminena JK, Aaltob M, Tarkoma S (2015) Mobile multi-
media streaming techniques: QoE and energy saving perspective. Pervasive and Mobile
Computing 16, Part A:96–114

20. Hoßfeld T, Egger S, Schatz R, Fiedler M, Masuch K, Lorentzen C (2012) Initial delay
vs. interruptions: Between the devil and the deep blue sea. In: 4th International Work-
shop on Quality of Multimedia Experience (QoMEX), IEEE, Melbourne, Australia, pp
1–6

21. Houdaille R, Gouache S (2012) Shaping HTTP adaptive streams for a better user ex-
perience. In: 3rd Multimedia Systems Conference, ACM, Chapel Hill, NC, USA, pp
1–9

22. Jiang J, Sekar V, Zhang H (2012) Improving fairness, efficiency, and stability in HTTP-
based adaptive video streaming with festive. In: 8th international conference on Emerg-
ing networking experiments and technologies, ACM, pp 97–108

23. Krogfoss B, Agrawal A, Sofman L (2012) Analytical method for objective scoring of
HTTP adaptive streaming (HAS). In: IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB), IEEE, pp 1–6

24. Li SQ, Chong S, Hwang CL (1995) Link capacity allocation and network control by fil-
tered input rate in high-speed networks. IEEE/ACM Transactions on Networking (TON)
3(1):10–25

25. Mansy A, Ver Steeg B, Ammar M (2013) Sabre: A client based technique for mitigat-
ing the buffer bloat effect of adaptive video flows. In: 4th ACM Multimedia Systems
Conference, ACM, pp 214–225

26. Mascolo S, Grieco LA (2003) Additive increase early adaptive decrease mechanism
for TCP congestion control. In: 10th International Conference on Telecommunications
(ICT), IEEE, vol 1, pp 818–825

27. Mascolo S, Racanelli G (2005) Testing TCP Westwood+ over transatlantic links at 10
gigabit/second rate. In: Protocols for Fast Long-distance Networks (PFLDnet) Work-
shop, Lyon, France, pp 1–6

28. Mascolo S, Casetti C, Gerla M, Sanadidi MY, Wang R (2001) TCP Westwood: Band-
width estimation for enhanced transport over wireless links. In: 7th annual international
conference on Mobile computing and networking, ACM, pp 287–297

29. Mascolo S, Grieco LA, Ferorelli R, Camarda P, Piscitelli G (2004) Performance evalu-
ation of Westwood+ TCP congestion control. Performance Evaluation 55(1):93–111

30. Mogul JC (1992) Observing TCP dynamics in real networks. ACM SIGCOMM Com-
puter Communication Review 22(4)

31. Ramadan W, Dedu E, Bourgeois J (2011) Avoiding quality oscillations during adaptive
streaming of video. International Journal of Digital Information and Wireless Commu-
nications (IJDIWC) 1(1):126–145

32. Sandvine (2016) Global internet phenomena report. https://www.sandvine.com
33. Seufert M, Egger S, Slanina M, Zinner T, Hobfeld T, Tran-Gia P (2014) A survey on

quality of experience of HTTP adaptive streaming. Communications Surveys & Tutori-
als, IEEE 17(1):469–492

34. Shuai Y, Petrovic G, Herfet T (2015) Olac: An open-loop controller for low-latency
adaptive video streaming. In: IEEE International Conference on Communications
(ICC), IEEE, London, UK, pp 6874–6879

26 Chiheb Ben Ameur et al.

35. Villa BJ, Heegaard PE (2013) Group based traffic shaping for adaptive HTTP video
streaming by segment duration control. In: 27th IEEE International Conference on Ad-
vanced Information Networking and Applications (AINA), IEEE, pp 830–837

36. Yang H, Chen X, Yang Z, Zhu X, Chen Y (2014) Opportunities and challenges of
HTTP adaptive streaming. International Journal of Future Generation Communication
and Networking 7(6):165–180

37. Yin X, Sekar V, Sinopoli B (2014) Toward a principled framework to design dynamic
adaptive streaming algorithms over HTTP. In: 13th ACM Workshop on Hot Topics in
Networks, ACM, Los Angeles, CA, USA, pp 1–9

38. Yin X, Jindal A, Sekar V, Sinopoli B (2015) A control-theoretic approach for dynamic
adaptive video streaming over HTTP. ACM SIGCOMM Computer Communication Re-
view 45(4):325–338

39. Zhang L, Shenker S, Clark DD (1991) Observations on the dynamics of a congestion
control algorithm: The effects of two-way traffic. ACM SIGCOMM Computer Com-
munication Review 21(4):133–147

40. Zukerman M, Neame TD, Addie RG (2003) Internet traffic modeling and future tech-
nology implications. In: 22nd Annual Joint Conference of the IEEE Computer and
Communications (INFOCOM), IEEE, vol 1, pp 587–596

